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Preliminaries

IEIIT-CNR

NATO Lecture Series SCI-195 6@RT 2008

Randomized Algorithms (RAs)

Randomized algorithms are frequently used in many 

areas of engineering, computer science, physics, 

finance, optimization,…but their appearance in systems 

and control is mostly limited to Monte Carlo 

simulations…

Main objective of this mini-course: Introduction to 

rigorous study of RAs for uncertain systems and 

control,  with specific applications
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Randomized Algorithms (RAs)

Combinatorial optimization, computational geometry

Examples: Data structuring, search trees, graph 

algorithms, sorting (RQS), …

Motion and path planning problems 

Mathematics of finance: Computation of path integrals

Bioinformatics (string matching problems) 
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Uncertainty

Uncertainty has been always a critical issue in control 

theory and applications

First methods to deal with uncertainty were based on a 

stochastic approach

Optimal control: LQG and Kalman filter

Since early 80’s alternative deterministic approach 

(worst-case or robust) has been proposed
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Robustness

Major stepping stone in 1981: Formulation of the H∞

problem by George Zames

Various “robust” methods to handle uncertainty now 

exist: Structured singular values, Kharitonov, 

optimization-based (LMI), l-one optimal control, 

quantitative feedback theory (QFT) 
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Robustness

Late 80’s and early 90’s: Robust control theory became 

a well-assessed area

Successful industrial applications in aerospace, 

chemical, electrical, mechanical engineering, …

However, …
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Limitations of Robust Control - 1

Researchers realized some drawbacks of robust control 

Consider uncertainty Δ bounded in a set B of radius ρ. 

Largest value of ρ such that the system is stable for all 

Δ ∈ B is called (worst-case) robustness margin 

Conservatism: Worst case robustness margin may be 

small

Discontinuity: Worst case robustness margin may be

discontinuous wrt problem data

IEIIT-CNR

NATO Lecture Series SCI-195 12@RT 2008

Limitations of Robust Control - 2

Computational Complexity: Worst case robustness is 

often NP-hard (not solvable in polynomial time unless 

P==NP))[1]

Various robustness problems are NP-hard

– static output feedback

– structured singular value

– stability of interval matrices

[1] V. Blondel and J.N. Tsitsiklis (2000)
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Conservatism and Complexity
Trade-Off

Uncertain or control design parameters often enter into 

the system in a nonlinear/nonconvex fashion

To avoid complexity issues (or just to find a solution of 

the problem) relaxation techniques such as SOS are used

Study issues about the accuracy of the approximation 

introduced and related complexity
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Different Paradigm Proposed

New paradigm proposed is based on uncertainty 

randomization and leads to randomized algorithms for 

analysis and synthesis

Within this setting a different notion of problem 

tractability is needed

Objective: Breaking the curse of dimensionality[1]

[1] R. Bellman (1957)
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Probability and Robustness

The interplay of Probability and Robustness for control 
of uncertain systems

Robustness: Deterministic uncertainty bounded

Probability: Random uncertainty (pdf is known)

Computation of the probability of performance

Controller which stabilizes most uncertain systems
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Key Features

We obtain larger robustness margins at the expense of a 

small risk

We study the probability degradation beyond the 

robustness margins

Computational complexity is generally not an issue: 

Randomized algorithms are  low complexity
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Uncertain Systems

M(s) Δ UncertaintySystem

Δ belongs to a structured set Bˇ

– Parametric uncertainty q

– Nonparametric uncertainty Δi

– Mixed uncertainty
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Worst Case Model

Worst case model: Set membership uncertainty

The uncertainty Δ is bounded in a set Bˇ

Δ ∈ Bˇ

Real parametric uncertainty   q=[q1,…, ql] ∈ —l

qi ∈ [qi
-, qi

+] 

Nonparametric uncertainty

Δi ∈ {Δi∈ —n,n : || Δi|| ≤ 1}
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Robustness

Uncertainty Δ is bounded in a structured set Bˇ

z = Fu(M,Δ) w, where Fu(M,Δ) is the upper LFT

M  

Δ

w z
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Objective of Robustness

Objective of robustness: To guarantee stability and 

performance for all                  

Δ ∈ Bˇ

Different probabilistic paradigm based on uncertainty 

randomization of Δ within Bˇ
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Example: Flexible Structure - 1

Mass spring damper model

Real parametric uncertainty affecting stiffness and 

damping

Complex unmodeled dynamics (nonparametric)

m1

l1

k1

m2

l2

k2

m3

l3

k3

m4

l4

k4

m5

l5

k5

l6

k6

IEIIT-CNR

NATO Lecture Series SCI-195 22@RT 2008

Flexible Structure - 2

M-Δ configuration for controlled systems and study stability of

q1, q2 ∈ —

Δ1∈ ¬4,4
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Probability Degradation Function
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Probabilistic Model

Probability density function associated to Bˇ

We now assume that Δ is a random matrix with given 

density function fΔ(Δ) and support Bˇ

Example: Δ is uniform in Bˇ
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Uniform Density

Take fΔ(Δ)=U[Bˇ] (uniform density within Bˇ)

In this case, for a subset S ⊆ Bˇ

[ ]
⎪⎩

⎪
⎨
⎧ ∈Δ

=
otherwise

if
vol

0
)(
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ˇ

ˇˇ

B
BBU

{ }
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Pr

ˇˇ BB vol
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vol
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S S =

Δ
=∈Δ ∫
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Performance Function

In classical robustness we guarantee that a certain 

performance requirement is attained for all Δ∈Bˇ

This can be stated in terms of a performance  function

J = J(Δ)

Examples: H∞ performance and robust stability 
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Example: H∞ Performance - 1

Compute the H∞ norm of the upper LFT Fu(M,Δ)

J(Δ) = || Fu(M, Δ)||∞

For given γ >0, check if 

J(Δ) < γ

for all Δ in Bˇ
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Example: H∞ Performance - 2

Continuous time SISO systems with  real parametric 
uncertainty q with upper LFT

Fu(M,Δ) = Fu(M,q) =

where q1 ∈ [0.2, 0.6] and q2 ∈ [10-5,3·10-5]

Letting J(q) = || Fu(M,q) ||∞ , we choose γ=0.003

Check if  J(q)<γ for all q in these intervals
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Example: H∞ Performance - 3

The set of q1, q2 for which J(q)<γ is shown below
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Example[1]: Robust Stability - 1

Consider the closed loop uncertain polynomial 

p(s,q) =

where q1 ∈ [0.3, 2.5], q2 ∈ [0,1.7] and r=0.5

Check stability for all q in these intervals

( ) ( ) ( ) 32
21212121

2 132661 ssqqsqqqqqqr +++++++++++

[1] G. Truxal (1961)
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Example: Robust Stability - 2

Set of unstable polynomials

Taking r=0 the unstable set reduces to a singleton

q1

q2

0.3 2.5

0

1.7

r
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Good and Bad Sets

We define two subsets of Bˇ

Δgood = {Δ: J(Δ) ≤ γ } ⊆ Bˇ

Δbad = {Δ: J(Δ) > γ } ⊆ Bˇ

Δgood is the set of Δ’s satisfying  performance
Measure of robustness is 

( ) ∫ Δ=
good

dvol good Δ
Δ
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Example of Good and Bad Sets

q1

q2
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Example of Good and Bad Sets - 2

q1

q2

0.3 2.5

0

1.7

Δbad

Δgood

Taking small r
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Probabilistic Robustness Measure

In worst-case analysis we compute γ such that all Δ
satisfy performance. Equivalently, we evaluate γ such 
that

Δgood = Bˇ

In a probabilistic setting, we are satisfied if the ratio

is close to one

( )
( )ˇBvol

vol goodΔ
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Probability of Performance[1]

We define the probability of performance as 

pγ = Pr{J(Δ) ≤ γ }

Notice that, if fΔ(Δ) is uniform, then

( )
( )ˇBvol

vol
p goodΔ

=γ

[1] R.F. Stengel (1980)
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Example: Closed-Form Computation

For Truxal’s example, we compute pγ  in closed-form

For uniform distribution, we have

vol(Δgood) = 3.74 – π r2

vol(Bˇ) = 3.74 
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P1: Performance Verification

For given performance level γ, check whether

J(Δ) ≤ γ

for all Δ in Bˇ

Compute the probability of performance pγ
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P2: Worst-Case Performance

Find Jmax such that

Compute the worst case performance (or its 
probabilistic counterpart)

)(maxmax Δ=
∈Δ

JJ
ˇB
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Randomized Algorithms
for Analysis
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Randomized Algorithm: Definition

Randomized Algorithm (RA): An algorithm that makes
random choices during its execution to produce a result

Example of a “random choice” is a coin toss

heads or                   tails
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Randomized Algorithm: Definition

Randomized Algorithm (RA): An algorithm that makes
random choices during its execution to produce a result

For hybrid systems, “random choices” could be
switching between different states or logical operations

For uncertain systems, “random choices” require (vector
or matrix) random sample generation
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Monte Carlo Randomized Algorithm

Monte Carlo Randomized Algorithm (MCRA): A
randomized algorithm that may produce incorrect results, 
but with bounded error probability
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Las Vegas Randomized Algorithm

Las Vegas Randomized Algorithm (LVRA): A 
randomized algorithm that always produces correct
results, the only variation from one run to another is the  
running time 
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Randomization of Uncertain Systems

Consider random uncertainty Δ, associated pdf and 
bounding set B

Δ is a (real or complex) random vector (parametric 
uncertainty) or matrix (nonparametric uncertainty)

Consider a performance function

J(Δ): B → R

and level γ > 0

Define worst case and average performance

Jmax = max J(Δ)           Jave = EΔ(J(Δ))
Δ∈B
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Example: H∞ Performance - 1

H∞ performance of sensitivity function

B = {Δ: Δ = bdiag (Δ1,... , Δq) ∈ Fn,m, σmax(Δ) ≤ ρ}

S(s,Δ) = 1/(1 + P(s,Δ) C(s))

J(Δ) = ||S(s,Δ)||∞
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Example: H∞ Performance - 2

H∞ performance of sensitivity function

B = {Δ: Δ = bdiag (Δ1,... , Δq) ∈ Fn,m, σmax(Δ) ≤ ρ}

S(s,Δ) = 1/(1 + P(s,Δ) C(s))

J(Δ) = ||S(s,Δ)||∞

Objective: Check if
Jmax b γ and Jave b γ 

These are uncertain decision problems
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Two Problem Instances

We have two problem instances for worst case 
performance

Jmax b γ   and Jmax > γ 
and two problem instances for average case performance

Jave b γ   and Jave > γ 

This leads to one-sided and two-sided MCRA
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One-Sided MCRA

One-sided MCRA: Always provide a correct solution in 
one of the instances (they may provide a wrong solution 
in the other instance)

Consider the empirical maximum

Jmax = max J(Δi)

 where Δi are random samples and N is the sample size

Check if  Jmax b γ or Jmax >  γ

i=1,…,N

^

^ ^
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One-Sided MCRA: Case 1

Δ1         Δ2     Δ3                        Δ4  Δ5 Δ6

Δ

J(Δ)
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One-Sided MCRA: Case 1

Δ1         Δ2     Δ3                        Δ4  Δ5 Δ6

J(Δ1)

J(Δ2)

J(Δ3)

J(Δ4)

J(Δ5)

J(Δ6)

Δ

J(Δ)

IEIIT-CNR

NATO Lecture Series SCI-195 52@RT 2008

One-Sided MCRA: Case 1

Jmaxγ
Jmax

Jmax < Jmax < γ

algorithm provides a correct solution

Δ1         Δ2     Δ3                        Δ4  Δ5 Δ6

J(Δ1)

J(Δ2)

J(Δ3)

J(Δ4)

J(Δ5)

J(Δ6)

Δ

J(Δ)

^

^
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One-Sided MCRA: Case 2

Jmaxγ Jmax

algorithm may provide a wrong solution

Δ1         Δ2     Δ3                        Δ4  Δ5 Δ6

J(Δ1)

J(Δ2)

J(Δ5)

J(Δ4)

J(Δ6)

J(Δ3)

Δ

J(Δ)

^

Jmax > γ > Jmax
^
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Two-Sided MCRA

Two-sided MCRA: They may provide a wrong solution 
in both instances

Consider the empirical average

Jave = ave J(Δi)

 where Δi are random samples and N is the sample size

Check if  Jave b γ or Jave >  γ

i=1,…,N

^

^ ^
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Two-Sided MCRA: Case 1

Jave

Δ1         Δ2     Δ3                        Δ4  Δ5 Δ6

J(Δ1)

J(Δ2)

J(Δ3)

J(Δ4)

J(Δ5)

J(Δ6)

Δ

J(Δ)

Jave
^

γ

Jave > γ > Jave
^

algorithm may provide a wrong solution
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Two-Sided MCRA: Case 2

Jave

Δ1         Δ2     Δ3                        Δ4  Δ5 Δ6

J(Δ1)

J(Δ2)

J(Δ3)

J(Δ4)

J(Δ5)

J(Δ6)

Δ

J(Δ)

Jave
^

γ

Jave < γ < Jave
^

algorithm may provide a wrong solution
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Las Vegas Randomized Algorithms

We also have zero-sided (Las Vegas) randomized 
algorithms

Las Vegas Randomized Algorithm (LVRA): Always 
give the correct solution

The solution obtained with a LVRA is probabilistic, so 
“always” means with probability one 

Running time may be different from one run to another

We can study the average running time
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Discrete Bounding Set

Δ1  Δ2     Δ3      Δ4 Δ5 Δ6    Δ7    Δ8 Δ9     Δ10  

Consider random uncertainty Δ, a discrete bounding set 
B, given pdf and performance function
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The Las Vegas Viewpoint

Consider discrete random variables 

The sample space is discrete and MN possible choices 
can be made

In the binary case we have 2N

Finding maximum requires ordering the 2N choices

Las Vegas can be used for ordering real numbers

Example: Randomized Quick Sort for sorting real 
numbers (classical in computer science) 
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Ingredients for RAs

Assume that Δ is random with pdf fΔ(Δ) with support Bˇ

Accuracy ε ∈(0,1) and confidence δ ∈(0,1) be assigned 

Performance  function for analysis and level

↓ ↓

J = J(Δ)                                          γ
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Randomized Algorithms for Analysis

Two classes of randomized algorithms for probabilistic 

robust performance analysis

P1: Performance verification (compute pγ)
P2: Worst-case performance (compute Jmax) 

Both are based on uncertainty randomization of Δ

Bounds on the sample size are obtained 
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Randomized Algorithms - 2

We estimate pγ by means of a randomized algorithm

First, we generate N i.i.d. samples

Δ1, Δ2, …, ΔN ∈ Bˇ

according to the density fΔ

We evaluate   J(Δ1), J(Δ2), …, J(ΔN)
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Empirical Probability

Construct an indicator function

An estimate of pγ  is the empirical probability

where Ngood is the number of samples such that J(Δi) ≤ γ

( )
N

N
I

N
p good

N

i

i
N =Δ= ∑

=1

1
ˆ

( )
⎩
⎨
⎧ ≤Δ

=Δ
otherwise

Jif
I

i
i

0

)(1 γ
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A Reliable Estimate

The empirical probability is a reliable estimate if

Find the minimum N such that

where ε ∈(0,1) and δ ∈(0,1)

{ } εγγ ≤−≤Δ=− NN pJpp ˆ)(Prˆ

{ } δεγ −≥≤− 1ˆPr Npp
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Chernoff Bound[1]

For any ε ∈(0,1) and δ ∈(0,1), if 

then

2

2

2
log

ε
δ≥N

{ } δεγ −≥≤− 1ˆPr Npp

[1] H. Chernoff (1952)
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Comparison Between Bounds
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Chernoff Bound

Remark: Chernoff bound improves upon other bounds 
such as Bernoulli (Law of Large Numbers)

Dependence on 1/δ is logarithmic

Dependence on 1/ε is quadratic

1.2⋅105

99.5%

0.5%

1.6⋅106

99.9%

0.5%

3.0⋅106

99.5%

0.1%

3.9⋅106N

99.9%1-δ
0.1%ε
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Computational Complexity of RAs

RAs are efficient (polynomial-time) because 

1. Random sample generation of Δi can be performed in  

polynomial-time 

2. Cost associated with the evaluation of J(Δi) for fixed 

Δi is polynomial-time

3. Sample size is polynomial in the problem size and 

probabilistic levels ε and δ
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1. Random Sample Generation

Random number generation (RNG): Linear and 

nonlinear methods for uniform generation in [0,1) such 

as  Fibonacci, feedback shift register, BBS, MT, …

Non-uniform univariate random variables: Suitable 

functional transformations (e.g., the inversion method)

The problem is much harder: Multivariate generation of 

samples of Δ with pdf fΔ(Δ) and support Bˇ

.It can be resolved in polynomial-time  

IEIIT-CNR

NATO Lecture Series SCI-195 70@RT 2008

2. Cost of Checking Stability

Consider a polynomial 

To check left half plane stability we can use the Routh
test. The number of multiplications needed is

The number of divisions and additions is equal to this 
number
We conclude that checking stability is O(n2)

odd for  
4

1
       even       for  

4

22

n
n

n
n −

n
nsasaaasp +++= L10),(
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3. Bounds on the Sample Size

Chernoff bound is independent on the size of Bˇ , on 
the structure ˇ, on the number of blocks, on the pdf

fΔ(Δ)

It depends only on δ and ε

Same comments can be made for other bounds such as 

Bernoulli
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Worst-Case Performance

Recall that

Generate N i.i.d. samples

Δ1, Δ2, …, ΔΝ ∈ Bˇ

according to the density fΔ

Compute the empirical maximum
Jmax = max J(Δi)

)(maxmax Δ=
∈Δ

JJ
ˇB

i=1,…,N

^
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Worst-Case Bound (Log-over-Log)[1]

For any ε ∈(0,1) and δ ∈(0,1), if

then
ε

δ

−

≥
1

1

1

log

log
N

[1] R. Tempo,  E. W. Bai and F. Dabbene (1996) 

{ }{ } δε −≥≤>Δ 1ˆ)(PrPr NJJ
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Comparison and Comments

Number of samples is much smaller than Chernoff

Bound is a specific instance of the fpras (fully 
polynomial randomized approximated scheme) theory

Dependence on 1/ε is basically linear

1.16⋅106

99.999%

0.001%

1.06⋅103

99.5%

0.5%

1.38⋅103

99.9%

0.5%

5.30⋅103

99.5%

0.1%

9.21⋅104

99.99%

0.01%

6.91⋅103N

99.9%1-δ
0.1%ε

⎟
⎠
⎞

⎜
⎝
⎛ ≈

−
ε

ε1

1
log
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Volumetric Interpretation

In the case of fΔ(Δ) uniform, we have

Therefore

is equivalent to

{ } ( )
( )ˇBvol

vol
JJ bad

N

Δ=>Δ ˆ)(Pr

{ }{ } δε −≥≤>Δ 1ˆ)(PrPr NJJ

( ) ( ){ } δε −≥≤ 1Pr ˇBvolvol badΔ
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Confidence Intervals

The Chernoff and worst-case bounds can be computed a-
priori and provide an explicit functional relation 

N = N(ε, δ)

The sample size obtained with the confidence intervals is 
not explicit

Given δ ∈(0,1), upper and lower confidence intervals pL

and pU are such that{ } δγ −=≤≤ 1Pr UL ppp
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Confidence Intervals - 2

The probabilities pL and pU can be computed a 
posteriori when the value of Ngood is known, solving 
equations of the type 

with δL+δU=δ

( )

( ) U
kN

U
k
U

N

k

L
kN

L
k
L

N

Nk

pp
k

N

pp
k

N

good

good

δ

δ

=−⎟
⎠

⎞
⎜
⎝

⎛

=−⎟
⎠

⎞
⎜
⎝

⎛

−

=

−

=

∑

∑

1

1

0
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Confidence Intervals - 3

γp̂

Up

Lp

δ = 0.05
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Statistical Learning Theory

The Chernoff Bound studies the problem

where pγ = Pr{J(Δ) ≤ γ }

Performance function J is fixed

Statistical Learning Theory computes bounds on the 
sample size for the problem

where J is a given class of functions

{ } δεγ −≥≤− 1ˆPr Npp

( ){ } δεγ −≥∈∀≤−≤Δ 1,ˆ)(PrPr JJpJ N
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VC and P-dimension[1,2]

Statistical Learning Theory aims at studying uniform
Law of Large Numbers

The bounds obtained depend on quantities called VC-
dimension (if J is a binary valued function), or P-
dimension (if J is a continuous valued function)

VC and P-dimension are measures of the problem 
complexity

[1] M. Vidyasagar (1997) 

[2] E.D. Sontag (1998)
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Choice of the Distribution - 1

The probability Pr{Δ ∈S}

depends on fΔ(Δ)  

It may vary between 0 

and 1 depending on the 

pdf fΔ(Δ) 
0.5
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Choice of the Distribution - 2

The bounds discussed are independent on the choice 
of the distribution but for computing Pr{J(Δ) ≤ γ } we 
need to know the distribution fΔ(Δ) 
Some research has been done in order to find the 
worst-case distribution in a certain class[1]

Uniform distribution is the worst-case if a certain 
target is convex and centrally symmetric

[1] B. R. Barmish and C. M. Lagoa (1997) 
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Choice of the Distribution - 3 

Minimax properties of the uniform distribution have

been studied[1]

[1] E. W. Bai, R. Tempo and M. Fu (1998)
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Probabilistic Robust Synthesis
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Analysis vs Design with Uncertainty

Starting point: Worst-case analysis versus design

Consider an interval family p(s,q), q∈Bq={q∈—n,||q||∞≤1}

Analysis problem: 

– Check if p(s,q) is stable for all q∈Bq

Answer: Kharitonov Theorem

Design Problem: 
– Does there exist a q∈Bq such that p(s,q) is stable? 

Answer: Unknown in general
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Synthesis Paradigm

Design the parameterized controller Kθ to guarantee 
stability and performance 

P

Δ

Kθ

d e

u y
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Synthesis Performance Function

Recall that the parameterized controller is Kθ

We replace J(Δ) with a synthesis performance  function 

J = J(Δ,θ)

where θ ∈ Θ represents the controller parameters to be 

determined and their bounding set
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Randomized Algorithms for Synthesis

Two classes of RAs for probabilistic  synthesis

Average performance synthesis[1]

Based on expected value minimization

Use of Statistical Learning Theory results

Very general problems can be handled

Existing bounds are very conservative and controller 
randomization is required

Ongoing research aiming at major reduction of sample 
size 

[1] M. Vidyasagar (1998)
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Randomized Algorithms for Synthesis

Robust performance synthesis[1]

Problem reformulation as robust feasibility

Only convex problems can be handled

Finite-time convergence with probability one is obtained

[1]B. Polyak and R. Tempo (2001)

IEIIT-CNR

NATO Lecture Series SCI-195 90@RT 2008

Robust Performance Synthesis

Uncertainty randomization of Δ in Bˇ

Convex optimization to design the controller K(s)

P(s)

Δ

K(s)

d e

u y
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RAs for Optimal Control (LQR)
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Uncertain Systems in State Space

We consider a state space description of the uncertain 

system

with x(0)=x0; x∈—n; u∈—m, Δ∈ Bˇ

For example, A(Δ) is an interval matrix with bounded 

entries

)()()()( tButxAtx +Δ=&

+− ≤≤ ijijij aaa
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Interval and Vertex Matrices

We consider interval uncertainty A (i.e. when Δ∈ Bˇ))

That is, aik ranges in the interval for all i, k

|aik - aik
* | ≤ wik

where aik
* are nominal values and wik are weights

Define the N = 2n2 vertex matrices A1, A2,…, AN

aik = aik
* + wik or aik = aik

* - wik

for all i, k =1, 2, …, n
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Common Lyapunov Functions

Given matrices A*, W and feedback K, find a common 

quadratic Lyapunov function Q > 0 for the system

x(t) = (A + B K) x(t)     for all A∈ A

Find  Q > 0 such that

L(Q, A) = (A+BK)T Q + Q (A+BK) < 0   for all A ∈ A

Equivalently, find  Q > 0 such that

λmax L(Q, A) < 0   for all A ∈ A

.
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Lyapunov Stability of Interval Systems

Quadratic Lyapunov stability analysis and synthesis of

interval systems are NP-hard problems

In principle, they can be solved in one-shot with convex 

optimization, but the number of constraints is 

exponential 

We can use relaxation (e.g. π/2 Theorem[1]) or 

randomization

[1] Yu. Nesterov (1997)
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Vertex Solution

Due to convexity, it suffices to study L(Q, A) < 0 for 

all vertex matrices[1]

Question: Do we really need to check all the vertex 

matrices (N = 2n2)?

[1] H.P. Horisberger, P.R. Belanger (1976)
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Vertex Reduction

Answer: It suffices to check “only” a subset of 22n

vertex matrices[1]

This is still exponential (the problem is NP-hard), but 

it leads to a major computational improvement for 

medium size problems (e.g. n = 8 or 10)

For example, for n=8, N is of the order 105 (instead of  

1019)

[1] T. Alamo, R. Tempo, D. Rodriguez, E.F. Camacho (2007)
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Diagonal Matrices and Generalizations

Transform the original problem from full square 

matrices A to diagonal matrices Z ∈ R2n,2n

It suffices to check the vertices of Z

Extensions for L2-gain minimization and other related 

LMI problems

Generalizations for multiaffine interval systems
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Las Vegas Randomized Algorithm 

We may perform randomization of the N = 2n2 vertices 

(in the worst case)

If we select the vertices in random order according to a 

given pdf, we have a LVRA
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Probabilistic Solution 

Randomly generate A1,…, AN. Then, check if the 

Lyapunov equation

AiQ + Q(Ai)T ≤ 0

is feasible for i=1,…,N and find a common solution

Q=QT >0

Critical problem: Even if N is relatively small, this is a 

hard computational problem
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Sequential Algorithm  

Key point: Sequential algorithm which deals with one 
constraint at each step

At step k we have

Phase 1: Uncertainty randomization of Δ
Phase 2: Gradient algorithm and projection

Final result: Find a solution Q=QT >0 with probability 
one in a finite number of steps
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Definition

Let En be an Euclidean space 

and C be the cone of positive semi-definite matrices

⎭
⎬
⎫

⎩
⎨
⎧

=∈== ∑
=

n

ki
k

nT
n aAAA

1,

2
1,—E

{ }0: ≥∈= AA nEC
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Projection on a Cone

For any real symmetric matrix A we define the 
projection [A]+∈C as 

The projection can be computed through the eigenvalue
decomposition A=TΛTT

Then 

where λi
+=max {λi ,0}

[ ] XAA
X

−=
∈

+

C
minarg

TTTA ++ Λ=][
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Phase 1: Uncertainty Randomization

Uncertainty randomization: Generate Δk ∈ Bˇ

Then, for guaranteed cost we obtain the Lyapunov

equation

0)()( ≤Δ+Δ kTk QAQA
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Matrix Valued Function

Define a matrix valued function

and a scalar function

where || ⋅ || is the Frobenius norm

We can also take the maximum eigenvalue of V(Q ,Δk)

)()(),( kTkk QAQAQV Δ+Δ=Δ

[ ]+Δ=Δ ),(),( kk QVQv
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Phase 2: Gradient Algorithm

We write

where ∂Q is the subgradient and the stepsize μk is 

and r>0 is a parameter

( ){ }[ ] ( )
⎩
⎨
⎧ >ΔΔ∂−=

+
+

otherwise                             

0, if    ,1

k

kkkk
Q

kk
k

Q

QvQvQQ μ

( ) ( ){ }
( ){ } 2

,

,,
kk

Q

kk
Q

kk
k

Qv

QvrQv

Δ∂

Δ∂+Δ
=μ
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Closed-form Gradient Computation

The function v(Q,Δk) is convex in Q and its subgradient

can be easily computed in a closed form
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Theorem[1]

Assumption: Every open subset of Bˇ has positive 
measure 

Theorem: A solution Q, if it exists, is found in a finite 
number of steps with probability one

Idea of proof: The distance of Qk from the solution set 
decreases at each correction step

[1] B.T. Polyak and R. Tempo (2001) 
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Example[1]

We study a multivariable example for the design of a 
controller for the lateral motion of an aircraft. 

The model consists of four states and two inputs
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[1] B.D.O. Anderson and J.B. Moore (1971)
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Example - 2

The state variables are 

– x1 bank angle

– x2 derivative of bank angle

– x3 sideslip angle

– x4 jaw rate

The control inputs are

– u1 rudder deflection

– u2 aileron deflection
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Example - 3

Nominal values: Lp=-2.93, Lβ=-4.75, Lr=0.78, 
g/V=0.086, Yβ=-0.11, Nβ=0.1, Np=-0.042, Nβ=2.601, 
Nr=-0.29

Perturbed matrix A(Δ): each parameter can take values in 
a range of  ±15% of the nominal value

Quadratic stability (γ=0): take R=I and S=0.01I

Remark: A(Δ) is  multiaffine in the uncertain parameters: 
quadratic stability can be ascertained solving 
simultaneously 29=512 LMIs
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Example - 4

Sequential algorithm:

– Initial point Q0 randomly selected

– 800 random matrices Δk

– The algorithm converged to

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
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0.73820.77980.70200.1645

0.44520.70201.09270.0843-
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Example - 5

The corresponding controller

satisfies all the 512 vertex LMIs and therefore it is also a 
quadratic stabilizing controller in a deterministic sense

The optimal LQ controller computed on the nominal 
plant satisfies only 240 vertex LMIs

⎥⎦

⎤
⎢⎣

⎡== −

0.4954-10.237010.1758-2.8814-

49.9587-43.12844.3731-38.61911QBK T
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Extensions
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Related Literature and Extensions

Minimization of a measure of violation for problems 

that are not strictly feasible[1]

Uncertainty in the control matrix, B=B(Δ), Δ∈ Bˇ

We take the feedback law 

where Y and Q=QT >0 are design variables

xYQu 1−=

[1] B.R. Barmish and P. Shcherbakov (1999)
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Related Literature

Related literature on optimization and adaptive control 
with linear constraints[1,2,3,4]

Stochastic approximation algorithms have been widely 
studied in the stochastic control and optimization 
literature[6,7]

[1] S. Agmon (1954)

[2] T.S. Motzkin and I.J. Schoenberg (1954)

[3] B.T. Polyak (1964)

[4] V.A. Bondarko and V.A. Yakubovich (1992)

[6] H.J. Kushner and G.G. Yin (2003)

[7] J.C. Spall (2003)
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Subsequent Research

Design of common Lyapunov functions for switched 
systems[1]

From common to piecewise Lyapunov functions[2]

Ellipsoidal algorithm instead of gradient algorithm[3]

Stopping rule which provides the number of steps[4]

Other algorithms have been recently proposed[5-6]

[1] D. Liberzon and R. Tempo (2004)
[2] H. Ishii, T. Basar and R. Tempo (2005)
[3] S. Kanev, B. De Schutter and M. Verhaegen (2002)
[4] Y. Oishi and H. Kimura (2003) 
[5] Y. Fujisaki and Y. Oishi (2007)
[6] T. Alamo, R. Tempo, D. R. Ramirez and E. F. Camacho (2007)
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Optimization Problems[1]

Extensions to optimization problems

Consider convex function f(x) and function g(x,Δ) 
convex in x for fixed Δ
Semi-infinite (nonlinear) programming problem

min f(x)

g(x,Δ) ≤ 0 for all Δ ∈ B

Reformulation as stochastic optimization

Drawback: Convergence results are only asymptotic

[1] V. B. Tadic, S. P. Meyn and R. Tempo (2003)
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Scenario Approach

The scenario approach for convex problems[1]

Non-sequential method which provides a one-shot 
solution for general convex problems

Randomization of Δ ∈ B and solution of a single convex 
optimization problem

Derivation of a bound on the sample size[1]

A new improved bound based on a pack-based strategy[2]

[1] G. Calafiore and M. Campi (2004)
[2] T. Alamo, R. Tempo and E.F. Camacho (2007)
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Convex Semi-Infinite Optimization

The semi-infinite optimization problem is 

min cT θ subject to  f(θ, Δ) ≤ 0    for all Δ ∈ B 

where f(θ, Δ) ≤ 0 is convex in θ for all Δ ∈ B

We assume that this problem is either unfeasible or, if 
feasible, it attains a unique solution for all Δ ∈ B (this 
assumption is technical and may be removed)

We assume that θ ∈ Θ ⊆ Rn
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Scenario Problem

Using randomization, we construct a scenario problem

Taking random samples Δi, i = 1, 2, …, N, we construct

f(θ, Δi) ≤ 0,   i = 1, 2, …, N

and 

min cT θ subject to  f(θ, Δi) ≤ 0,   i = 1, 2, …, N
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Theorem[1]

Theorem: For any ε ∈(0,1) and δ ∈(0,1), if

N ≥ │2/ε log(1/δ) + 2n + 2n/ε log (2/ε) │
then, with probability no smaller than 1- δ
- either the scenario problem is unfeasible and then also 
the semi-infinite optimization problem is unfeasible

- or, the scenario problem is feasible, then its optimal 
solution θN satisfies 

Pr{ Δ ∈ B : f(θ, Δ) > 0 } ≤ ε

^

__

[1] G. Calafiore and M. Campi (2004)
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A New Improved Bound[1]

A new improved bound (based on a so-called pack-
based strategy) has been recently obtained

N ≥ │2/ε log(1/2δ) + 2n + 2n/ε log 4 │

The main difference with the previous bound is that the 
factor 

2n/ε log (2/ε)    
is replaced with 

2n/ε log 4
^

__

[1] T. Alamo, R. Tempo and E.F. Camacho (2007)
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RACT
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RACT

RACT: Randomized Algorithms Control Toolbox for 
Matlab

RACT has been developed at IEIIT-CNR and at the 
Institute for Control Sciences-RAS, based on a bilateral 
international project 

Members of the project
Andrey Tremba (Main Developer and Maintainer) 
Giuseppe Calafiore
Fabrizio Dabbene
Elena Gryazina
Boris Polyak (Co-Principal Investigator) 
Pavel Shcherbakov
Roberto Tempo (Co-Principal Investigator) 
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RACT

Main features

Define a variety of uncertain objects: scalar, vector and 
matrix uncertainties, with different pdfs

Easy and fast sampling of uncertain objects of almost 
any type

Randomized algorithms for probabilistic performance 
verification and probabilistic worst-case performance

Randomized algorithms for feasibility of uncertain LMIs
using stochastic gradient, ellipsoid or cutting plane 
methods (YALMIP needed)
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Applications of Randomized 
Algorithms
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Application of RAs

Randomized algorithms have been developed for 

various specific applications

Control of flexible structures

Stability and robustness of high speed networks

Stability of quantized sampled-data systems

Brushless DC motors

Control design of Mini UAV
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Probabilistic Control of 
Mini-UAVs[1]

[1] L. Lorefice, B. Pralio and R. Tempo (2007)
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Italian National Project 
for Fire Prevention

This activity is supported by the Italian Ministry for 
Research within the National Project

Study and development of a real-time land control and 
monitoring system for fire prevention

Five research groups are involved together with a 
government agency for fire surveillance and patrol
located in Sicily

The aerial platform is based on the MicroHawk
configuration, developed at the Aerospace Engineering 
Department, Politecnico di Torino, Italy
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MH1000 Platform - 1

Platform features

- wingspan 3.28 ft (1 m)

- total weight 3.3 lb (1.5 kg)
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MH1000 Platform - 2

Main on-board equipment

- various sensors and two cameras (color and infrared) 

DC motor

Remote piloting and autonomous flight

Flight endurance of about 40 min

Flight envelope

- min/max velocity: 33 ft/s (10 m/s) – 66 ft/s (17 m/s)

- average velocity: 43 ft/s (14 m/s)
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Flight Envelope (Limits) 

Wing loading effect total weight

Propeller sizing effect
Propulsive constraint  (blu)    maximum flight 
speed

Aerodynamic constraint (red) minimum flight 
speed (stall effect)

velocity: 33 ft/s (10 m/s) – 66 ft/s (17 m/s)

IEIIT-CNR

NATO Lecture Series SCI-195 134@RT 2008

DC motor: Hacker B20-15L (4:1)

controller: Hacker Master Series 18-B-Flight

battery: Kokam 2000HD (3x)

receiver: Schulze Alpha840W

servo: Graupner C1081 (2x)

weight: 58 g

dimensions: Ø 20 x 40 mm

Kv: 3700 rpm/volt

weight: 21 g

dimensions: 33 X 23 X 7 mm

current drain: 18 A

weight: 160 g

dimensions: 79 X 42 X 25 mm

capacity: 2000 mAh

weight: 13.5 g

dimensions: 52 X 21 X 13 mm

8 channels

weight: 13 g

dimensions: 23 X 9 X 21 mm

torque: 12 Ncm

Basic on-board Systems
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Prototype Manufacturing - 1

raw material

polistyrene

kevlar

fiberglass

carbon fiber

epoxy resin
plywood

balsa wood

glue
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working instrumentshot wire foam cutting machine

lifting surfaces outline

slide outline
fuselage reference

Prototype Manufacturing - 2
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prototype

easy construction
rapid manufacturing

bad model reproducibility
inaccurate geometry

Prototype Manufacturing - 3
IEIIT-CNR
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State Space Model

State space formulation obtained by linearization of the 

full (12 coupled nonlinear ODE) model

x(t) = A(Δ) x(t) + B(Δ) u(t)

u(t) = - K x(t)

where x = [V, α, q, θ]T    (V flight speed, α angle of 
attack, q and θ pitch rate and angle), Δ uncertainty

Consider longitudinal plane dynamics stabilization

Control u is the symmetrical elevon deflection

.
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Uncertainty Description - 1

We consider structured parameter uncertainties affecting 
plant and flight conditions, and aerodynamic database 

Uncertainty vector Δ = [δ1,..., δ16] where δi ∈ [δi
-, δi

+] 

Key point: There is no explicit relation between state 
space matrices A and B and uncertainty Δ
This is due to the fact that state space system is obtained 
through linearization and off-line flight simulator

The only techniques which could be used in this case are 
simulation-based which lead to randomized algorithms

IEIIT-CNR

NATO Lecture Series SCI-195 140@RT 2008

Uncertainty Description - 2

We consider random uncertainty Δ = [δ1,..., δ16]T

The pdf is either uniform (for plant and flight 
conditions) or Gaussian (for aerodynamic database 
uncertainties) 

Flight conditions uncertainties need to take into account 
large variations on physical parameters

Uncertainties for aerodynamic data are related to 
experimental measurement or round-off errors
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Plant and Flight Condition Uncertainties

71.481.21± 101.34Umoment of inertia [lb ft2]

66.185.06± 105.61Uwing surface [ft2]

51.851.67± 51.75Umean aero chord [ft]

43.443.12± 53.28Uwingspan [ft]

33.642.98± 103.31Umass [lb]

2328.080± 100164.04Ualtitude [ft]

149.0536.25± 1542.65Uflight speed [ft/s]

#δi
+δi

-%⎯δipdfparameter
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Aerodynamic Database Uncertainties

160.01500-0.94853GCm   [rad-1]

150.02200-1.41136GCZ    [rad-1]

140.00540-0.17072GCX    [rad-1]

130.01000-0.76882GCmq [rad-1]

120.05000-1.49462GCZq [rad-1]

110.00650-0.20435GCXq [rad-1]

100.00040-0.02401GCm [-]

90.00500-0.30651GCZ  [-]

80.00040-0.01215GCX  [-]

#σi⎯δipdfparameter
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Standard Deviation and Velocity

Standard deviation is experimentally computed from the velocity
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Critical Parameters and Matrices

We select flight speed (δ1) and take off mass (δ3) as
critical parameters

Flight speed is taken as critical parameter to optimize 
gain scheduling issues

Take off mass is a key parameter in mission profile 
definition

We define critical matrices

Ac
1     Ac

2     Ac
3    Ac

4       Bc
1    Bc

2    Bc
3    Bc

4 

They are constructed setting δ1, δ3 to the extreme values
δ1

-, δ1
+,δ3

-, δ3
+ and all the remaining δi  are equal to ⎯δi
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Phase 1: Random Gain Synthesis (RGS)

Critical parameters are flight speed and take off mass 

Specification property
S1 = {K: Ac – Bc K satisfies the specs below}

ωSP ∈[4.0,6.0] rad/s ζSP ∈[0.5,0.9]        ωPH ∈[1.0,1.5] rad/s

ζPH  ∈[0.1,0.3]                ΔωSP < ± 45% ΔωPH < ± 20%

where ω and ζ are undamped natural frequency and 
damping ratio of the characteristic modes; SP and PH

denote short period and phugoid mode
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Specs  in the Complex Plane
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Volume of the Good Set

Define a bounding set B of gains K

B = {K: ki ∈[ki
-,ki

+], i= 1,…,4} 
Define the volume of the good set 

Volgood = !A d K

where A = {K∈B ' S1 } 
VolB is simply the volume of the hyperrectangle B
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Randomized Algorithm 1 (RGS)

Uniform pdf for controller 
gains K in given intervals

Accuracy and confidence

ε =4 ·10-5 and δ = 3 · 10-4

Number of random
samples is computed with
“Log-over-Log” Bound
obtaining N = 200,000 

We obtained 5 gains Ki

satisfying specification
property S1
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Randomized Algorithm 1 (RGS) 

Given ε, δ ∈ (0,1), RGS returns the set of gains {K1,…,Ks} 
satisfying S1

1. Compute N using the Log-over-log Bound;
2. For fixed j=1,2,…,N, generate uniformly the gain random matrix Kj ∈ B;
3. Set C=0;
4. For fixed i=1,2,3,4, compute the closed-loop matrix

Acl
i(Kj) = Ac

i - Bc
i Kj;

- if Kj ∈ S1, set C = C+1; 
- otherwise, set C = C;

5. End;
6. If C = 4, return the gain Kj;
7. Set j = j+1 and return to Step 2;
8. End
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Random Gain Set

-0.004173400.016093000.094827000.00039238K5

-0.004043800.015300000.091832000.00010855K4

-0.004863400.015482000.094308000.00054999K3

-0.003235100.015555000.095812000.00021450K2

-0.004735100.015774000.094650000.00044023K1

KθKqKαKVgain set
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Phase 2: Random Stability Robustness 
Analysis (RSRA) 

Take Krand = Ki obtained in Phase 1

Randomize Δ according to the given pdf and take N
random samples Δi

Specification property

S2 = {Δ: A(Δ) – B(Δ) Krand satisfies the specs of S1}

Computation of the empirical probability of stability Np̂
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Empirical Probability 

Consider fixed gain Krand

Define the probability
ptrue = !C p(Δ) d Δ

where C = {Δ∈B ' S2 } and p(Δ) is the given pdf
Then, we introduce a “success” indicator function

I(Δj) = 1 if Δj ∈ S2

or I(Δj) = 0 otherwise
The empirical probability for S2 is given by

= Ngood/N
where Ngood is equal to the number of successes

Np̂

IEIIT-CNR

NATO Lecture Series SCI-195 153@RT 2008

Randomized Algorithm 2 (RSRA)

Take Krand from Phase 1

Accuracy and confidence

ε = δ = 0.0145

Number of random
samples is computed with
Chernoff Bound obtaining
N =5,000 

Empirical probability is
defined using an indicator
function
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Randomized Algorithm 2 (RSRA) 

Given ε, δ ∈ (0,1), RSRA returns the empirical probability
that S2 is satisfied for a gain Krand provided by Algorithm 1

1. Compute N using the Chernoff Bound;
2. Generate N random vectors Δj ∈ B according to the given pdf;
3. For fixed j=1,2,…,N, compute the closed-loop matrix

Acl(Δj) = A(Δj) - B(Δj)Krand;
- if Acl(Δj) ∈ S2, set I(Δj) = 1; 
- otherwise, set I(Δj) = 0; 

4. End;
5. Return the empirical probability

Np̂

Np̂
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Empirical Probability of Stability 
for Phase 2

K5

K4

K3

K2

K1

gain set

85.14%

93.86%

89.31%

90.60%

88.56%

empirical probability
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Probability Degradation Function

Flight condition uncertainties are multiplied by the 
amplification factor ρ > 0 keeping the nominal value 
constant

δi ∈ ρ [δi
-, δi

+]     for i = 1, 2, …, 7
No uncertainty affects the aerodynamic database, i.e.

δi = ⎯δi                 for i = 8, 9, …, 16
For fixed ρ∈[0,1.5] we compute the empirical
probability for different gain sets Ki

The plot empirical probability vs ρ is the probability
degradation function
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Probability Degradation Function 
for Phase 2
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Root Locus Plot for Phase 2

Root locus for K2 (left) and K4 (right)
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Phase 3: Random Performance 
Robustness Analysis (RPRA)

This phase is similar to Phase 2, but military specs are 
considered (bandwidth criterion)
Specification property

S3 = {Δ: A(Δ) – B(Δ) Krand satisfies the specs below}

ωBW ∈[2.5,5.0] rad/s τP ∈[0.0,0.5] s

where ωBW and τP are bandwidth and phase delay of the 
frequency response
Computation of the empirical probability that S3 is
satisfied
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Bandwidth Criterion
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Randomized Algorithm 3 (RPRA)

Take Krand from Phase 1

Numer of random samples
is computed with the 
Chernoff Bound obtaining
N =5,000 

Empirical probability is
defined using an indicator
function
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Randomized Algorithm 3 (RPRA) 

Given N and Acl(Δj), j=1,2,…,N, provided by Algorithm 2, RPRA

returns the empirical probability that S3 is satisfied for a gain

Krand provided by Algorithm 1

1. For fixed j=1,2,…,N
- if Acl(Δj) ∈ S3, set I(Δj) = 1; 

- otherwise, set I(Δj) = 0; 

2. End;

3. Return the empirical probability

Np̂

Np̂
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Empirical Probability of Performance 
for Phase 3

K5

K4

K3

K2

K1

gain set

96.06%

84.78%

90.80%

95.16%

93.58%

empirical probability
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Probability Degradation Function 
for Phase 3
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Bandwidth Criterion for Phase 3

Bandwidth criterion for K1 (left) and K3 (right)
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Gain Selection

Multi-objective criterion as a compromise between 

different specifications      

Finally we selected gain K1 as the best compromise 

between all the specs and criteria!
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Conclusions: Flight Tests in Sicily - 1

Evaluation of the payload carrying capabilities and 

autonomous flight performance

Mission test involving altitude, velocity and heading 

changing was performed in Sicily

Checking effectiveness of the control laws for 

longitudinal and lateral-directional dynamics 

Flight control design based on RAs for stabilization and 

guidance
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Conclusions: Flight Tests in Sicily - 2

Satisfactory response of MH1000

Possible improvements by iterative design procedure

Stability of the platform is crucial for the video quality 

and in the effectiveness of the surveillance and 

monitoring tasks
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Color Camera: Right Turn
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Color Camera: Landing Phase
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Infrared Camera - 1
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Infrared Camera - 1

road
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Infrared Camera - 1

road

shed
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Infrared Camera - 1

road

car

shed
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Infrared Camera - 1

road
water 

pipe

car

shed
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Infrared Camera - 2 
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Infrared Camera - 3
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Conclusions
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PAC Algorithms

Randomized algorithms are Probably Approximately 

Correct (PAC)

We give up a guaranteed deterministic solution

This implies accepting a “small” risk of giving a wrong 

solution

The risk can be made arbitrarily small (but not zero) 

taking suitable values of so-called confidence and 

accuracy
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PAC Algorithms

Two open problems

Optimization with sequential methods

Derive “reasonable” bounds for the statistical learning 

theory approach


